Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

Scientists develop patch to monitor blood glucose without finger-prick tests

Scientists have created a non-invasive patch to measure glucose levels through the skin – potentially removing the need for millions of diabetics to carry out finger-prick blood tests.

The patch draws out glucose from fluid between cells across hair follicles, which are individually accessed through a set of miniature sensors using a small electric current. It does not pierce the skin.

Glucose collects in tiny reservoirs and is measured, with readings taken every 10 to 15 minutes over several hours.

The patch, developed by University of Bath scientists, has been tested on pig skin and human volunteers (University of Bath/PA)
The patch, developed by University of Bath scientists, has been tested on pig skin and human volunteers (University of Bath/PA)

Researchers say the array of sensors and reservoirs on the patch mean it does not require calibration with a blood sample, making finger-prick blood tests unnecessary.

The team, from the University of Bath, hope the patch will become a low-cost, wearable sensor that sends regular, clinically relevant glucose measurements to a phone or smartwatch wirelessly – alerting patients when they may need to take action.

Their work is published in the journal Nature Nanotechnology.

Professor Richard Guy, from the university’s Department of Pharmacy & Pharmacology, said: “A non-invasive – that is, needle-less – method to monitor blood sugar has proven a difficult goal to attain.

“The closest that has been achieved has required either at least a single-point calibration with a classic ‘finger-stick’, or the implantation of a pre-calibrated sensor via a single needle insertion.

“The monitor developed at Bath promises a truly calibration-free approach, an essential contribution in the fight to combat the ever-increasing global incidence of diabetes.”

An important advantage of the patch is that each miniature sensor can operate on a small area over an individual hair follicle.

This significantly reduces inter and intra-skin variability in glucose extraction and increases the accuracy of the measurements, the scientists say.

Luca Lipani, a PhD researcher, is part of the team which has developed a wearable patch which can monitor blood glucose  (University of Bath/PA)
Luca Lipani, a PhD researcher, is part of the team which has developed a wearable patch which can monitor blood glucose (University of Bath/PA)

Dr Adelina Ilie, from the Department of Physics, said: “The specific architecture of our array permits calibration-free operation, and it has the further benefit of allowing realisation with a variety of materials in combination.

“We utilised graphene as one of the components as it brings important advantages: specifically, it is strong, conductive, flexible, and potentially low-cost and environmentally friendly.

“In addition, our design can be implemented using high-throughput fabrication techniques like screen printing, which we hope will ultimately support a disposable, widely affordable device.”

The team tested the patch on pig skin, where they showed it could accurately track glucose levels across the range seen in diabetic human patients, and on healthy human volunteers.

Their next steps include refining the design of the patch to optimise the number of sensors, to demonstrate full functionality over a 24-hour period and to undertake a number of clinical trials.

In the UK, just under 6% of adults have diabetes though up to 50% of adults with the disorder are undiagnosed.

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Medical Research Council (MRC), and the Sir Halley Stewart Trust.